Strengthening Order Preserving Encryption with Differential Privacy.

Conference on Computer and Communications Security (CCS)(2022)

引用 3|浏览88
暂无评分
摘要
Ciphertexts of an order-preserving encryption (OPE) scheme preserve the order of their corresponding plaintexts. However, OPEs are vulnerable to inference attacks that exploit this preserved order. At another end, differential privacy has become the de-facto standard for achieving data privacy. One of the most attractive properties of DP is that any post-processing (inferential) computation performed on the noisy output of a DP algorithm does not degrade its privacy guarantee. In this paper, we propose a novel differentially private order preserving encryption scheme, OP$\epsilon$. Under OP$\epsilon$, the leakage of order from the ciphertexts is differentially private. As a result, in the least, OP$\epsilon$ ensures a formal guarantee (specifically, a relaxed DP guarantee) even in the face of inference attacks. To the best of our knowledge, this is the first work to combine DP with a property-preserving encryption scheme. We demonstrate OP$\epsilon$'s practical utility in answering range queries via extensive empirical evaluation on four real-world datasets. For instance, OP$\epsilon$ misses only around $4$ in every $10K$ correct records on average for a dataset of size $\sim732K$ with an attribute of domain size $\sim18K$ and $\epsilon= 1$.
更多
查看译文
关键词
order preserving encryption,privacy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要