A prototype proton radiography system for clinical use

Christina Sarosiek,Ethan A. DeJongh, George Coutrakon, Don F. DeJongh, Kirk L. Duffin,Nicholas T. Karonis,Caesar E. Ordoñez,Mark Pankuch, Victor Rykalin,James S. Welsh, John R. Winans

arxiv(2020)

引用 0|浏览0
暂无评分
摘要
Verification of patient specific proton stopping powers obtained in the patient treatment position can be used to reduce the distal margins needed in particle beam planning. Proton radiography can be used as a pre-treatment instrument to verify integrated stopping power consistency with the treatment planning CT. Although a proton radiograph is a pixel by pixel representation of integrated stopping powers, the image may also be of high enough quality and contrast to be used for patient alignment. This investigation qualifies the accuracy and image quality of a prototype proton radiography system on a clinical proton delivery system. We have developed a clinical prototype proton radiography system designed for integration into efficient clinical workflows. We tested the images obtained by this system for water-equivalent thickness (WET) accuracy, image noise, and spatial resolution. We evaluated the WET accuracy by comparing the average WET and rms error in several regions of interest (ROI) on a proton radiograph of a custom peg phantom. We measured the spatial resolution on a CATPHAN Line Pair phantom and a custom edge phantom by measuring the 10% value of the modulation transfer function (MTF). In addition, we tested the ability to detect proton range errors due to anatomical changes in a patient with a customized CIRS pediatric head phantom and inserts of varying WET placed in the posterior fossae of the brain. We took proton radiographs of the phantom with each insert in place and created difference maps between the resulting images. Integrated proton range was measured from an ROI in the difference maps.
更多
查看译文
关键词
prototype proton radiography system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要