Distinct mRNA and long non-coding RNA expression profiles of decidual natural killer cells in patients with early missed abortion.

FASEB JOURNAL(2020)

引用 7|浏览9
暂无评分
摘要
Early non-chromosome-related missed abortion (MA) is commonly associated with an altered immunological environment during pregnancy. Human decidual natural killer (dNK) cells, the most abundant lymphocyte population within the first-trimester maternal-fetal interface, are vital maternal regulators of immune tolerance mediating successful embryo implantation and placentation. Previous studies have shown that dNK cells may play a role in MA. However, the gene expression status and specific altered manifestations of dNK cells in patients with early MA remain largely unknown. Here, we show that MA dNK cells have distinct mRNA and lncRNA expression profiles through RNA sequencing, with a total of 276 mRNAs and 67 lncRNAs being differentially expressed compared with controls. Protein-protein interaction analysis of differentially expressed mRNAs was performed to identify hub genes and key modules. An lncRNA-mRNA regulatory network characterized by the small-world property was constructed to reveal the regulation of mRNA transcription by differential hub lncRNAs. Functional annotation of differentially expressed mRNAs and lncRNAs was performed to disclose their potential roles in MA pathogenesis. Our data highlight several enriched biological processes (immune response, inflammatory response, cell adhesion, and extracellular matrix [ECM] organization) and signaling pathways (cytokine-cytokine receptor interaction, ECM-receptor interaction, Toll-like receptor signaling pathway, and phosphatidylinositol signaling system) that may influence MA. This study is the first to demonstrate the involvement of altered mRNA and lncRNA expression profiles in the dNK cell pathogenesis of early MA, facilitating a better understanding of the underlying molecular mechanisms and the development of novel MA therapeutic strategies targeting key mRNAs and lncRNAs.
更多
查看译文
关键词
functional annotation,lncRNA-mRNA interaction network,mRNA and lncRNA profiles,protein-protein interaction,RNA sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要