Foundry-compatible thin film lithium niobate modulator with RF electrodes buried inside the silicon oxide layer of the SOI wafer.

OPTICS EXPRESS(2020)

引用 16|浏览7
暂无评分
摘要
Ever-increasing complexity of communication systems demands the co-integration of electronics and photonics. But there are still some challenges associated with the integration of thin film lithium niobate (TFLN) electro-optic modulators with the standard and well-established silicon photonics. Current TFLN platforms are mostly not compatible with the silicon photonics foundry process due to the choice of substrate or complicated fabrication requirements, including silicon substrate removal and formation of radio-frequency (RF) electrodes on the top of the TFLN. Here, we report on a platform where all the optical and RF waveguiding structures are fabricated first, and then the TFLN is bonded on top of the silicon photonic chip as the only additional step. Hence, the need for substrate removal is eliminated, and except for the last step of FPLN bonding, its fabrication process is silicon foundry compatible and much more straightforward compared to other fabrication methods. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要