Temperature-triggered micellization of interferon alpha-diblock copolypeptide conjugate with enhanced stability and pharmacology

Journal of Controlled Release(2020)

引用 18|浏览5
暂无评分
摘要
Polypeptides are useful in designing protein-polypeptide conjugates for therapeutic applications; however, they are not satisfactory in improving the stability of therapeutic proteins and extending their in vivo half-life. Here we show that thermally-induced self-assembly (TISA) of elastin-like polypeptide diblock copolymer fused interferon alpha (IFNα-ELPdiblock) into a spherical micelle can dramatically enhance the proteolytic stability of IFNα. Notably, the circulation half-life of IFNα-ELPdiblock micelle (54.7 h) is 124.3-, 5.7-, and 1.4-time longer than those of free IFNα (0.44 h), freely soluble IFNα-ELP (9.6 h), and PEGylated IFNα (39.0 h), respectively. Importantly, in a mouse model of ovarian tumor, IFNα-ELPdiblock micelle exhibited significantly enhanced tumor retention and antitumor efficacy over free IFNα, freely soluble IFNα-ELP, and even PEGylated IFNα. These findings provide a thermoresponsive supramolecular strategy of TISA to design protein-diblock copolypeptide conjugate micelles with enhanced stability and pharmacology.
更多
查看译文
关键词
Protein-polymer conjugate,Polypeptide,Self-assembly,Protein delivery,Thermosensitivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要