Biological functions and large-scale profiling of protein glycosylation in human semen.

JOURNAL OF PROTEOME RESEARCH(2020)

引用 19|浏览14
暂无评分
摘要
Glycosylation is one of the most important post-translational modifications of proteins and plays an essential role in spermatogenesis, maturation, extracellular quality control, capacitation, sperm-egg recognition, and final fertilization. Spermatozoa are synthesized in the testes inactively with a thick glycocalyx and passed through the epididymis for further modification by glycosylation, deglycosylation, and integration to reach maturation. Subsequently, sperm capacitation and further fertilization require redistribution of glycoconjugates and dramatic glycocalyx modification of the spermatozoa surface. Furthermore, glycoproteins and glycans in seminal plasma are functional in maintaining spermatozoa structure and stability. Therefore, aberrant glycosylation may cause alteration of semen function and even infertility. Currently, mass spectrometry-based technologies have allowed large-scale profiling of glycans and glycoproteins in human semen. Quantitative analysis of semen glycosylation has also indicated many involved glycoproteome issues in male infertility and the potential biomarkers for diagnosis of male infertility in clinical. This review summarizes the role of glycosylation during spermatozoa development, the large-scale profiling of glycome and glycoproteome in human semen, as well as the association of aberrant glycosylation with infertility.
更多
查看译文
关键词
semen,glycosylation,spermatogenesis,fertilization,male infertility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要