Antifungal Resistance-Modifying Multiplexing Action Of Momordica Charantia Protein And Phosphorylated Derivatives On The Basis Of Growth-Dependent Gene Coregulation In Candida Albicans

Qiao Yuan-Biao, Zhang Lan-Fang,Qiao Qi, Niu Jia-Hui, Ren Ze-Mei, Yang Hai-Mei,Zhu Chen-Chen, Pan Hong-Ju, Duan Nan-Nan,Li Qing-Shan

MEDICAL MYCOLOGY(2021)

引用 1|浏览0
暂无评分
摘要
Fungal growth-dependent gene coregulation is strongly implicated in alteration of gene-encoding target proteases ruling with an antifungal resistance niche and biology of resistant mutants. On the basis of multialterative processes in this platform, the resistance-modifying strategy is designed in ketoconazole resistant Candida albicans and evaluated with less selective Momordica charantia protein and allosterically phosphorylated derivatives at the Thr102, Thr24 and Thr255 sites, respectively. We demonstrate absolutely chemosensitizing efficacy regarding stepwise-modifying resistance in sensitivity, by a load of only 26.23-40.00 mu g/l agents in Sabouraud's dextrose broth. Five successive modifying-steps realize the decreasing of ketoconazole E-test MIC50 from 11.10 to a lower level than 0.10 mg/l. With the ketoconazole resistance-modifying, colony undergoes a high-frequency morphological switch between high ploidy (opaque) and small budding haploid (white). A cellular event in the first modifying-step associates with relatively slow exponential growth (ie, a 4-h delay)-dependent action, mediated by agents adsorption. Moreover, multiple molecular roles are coupled with intracellularly and extracellularly binding to ATP-dependent RNA helicase dbp6; the 0.08-2.45 fold upregulation of TATA-box-binding protein, rRNA-processing protein and translation initiation factor 5A; and the 7.52-55.33% decrease of cytochrome P450 lanosterol 14 alpha-demethylase, glucan 1, 3-beta glucosidase, candidapepsin-1 and 1-acylglycerol-3-phosphate O-acyltransferase. Spatial and temporal gene coregulation, in the transcription and translation initiation stages with rRNA-processing, is a new coprocessing platform enabling target protease attenuations for resistance-impairing. An updated resistance-modifying measure of these agents in the low-dose antifungal strategic design may provide opportunities to a virtually safe therapy that is in high dose-dependency.Lay SummaryA new platform to modify resistance is fungal growth-dependent gene coregulation. MAP30 and phosphorylated derivatives are candidate resistance-modifying agents. Low-dose stepwise treatment absolutely modifies azole resistance in model fungus.
更多
查看译文
关键词
Resistance-modifying multiplexing action, Candida albicans, growth-dependent gene coregulation, Momordica charantia protein, phosphorylated derivatives
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要