Sex Differences And The Neuroendocrine Regulation Of Seasonal Reproduction By Supplementary Environmental Cues

INTEGRATIVE AND COMPARATIVE BIOLOGY(2020)

引用 19|浏览1
暂无评分
摘要
Seasonal rhythms in reproduction are conserved across nature and optimize the timing of breeding to environmental conditions favorable for offspring and parent survival. The primary predictive cue for timing seasonal breeding is photoperiod. Supplementary cues, such as food availability, social signals, and temperature, fine-tune the timing of reproduction. Male and female animals show differences in the sensory detection, neural integration, and physiological responses to the same supplementary cue. The neuroendocrine regulation of sex-specific integration of predictive and supplementary cues is not well characterized. Recent findings indicate that epigenetic modifications underlie the organization of sex differences in the brain. It has also become apparent that deoxyribonucleic acid methylation and chromatin modifications play an important role in the regulation and timing of seasonal rhythms. This article will highlight evidence for sex-specific responses to supplementary cues using data collected from birds and mammals. We will then emphasize that supplementary cues are integrated in a sex-dependent manner due to the neuroendocrine differences established and maintained by the organizational and activational effects of reproductive sex hormones. We will then discuss how epigenetic processes involved in reproduction provide a novel link between early-life organizational effects in the brain and sex differences in the response to supplementary cues.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要