A Neonatal Imaging Model Of Gram-Negative Bacterial Sepsis

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS(2020)

引用 0|浏览0
暂无评分
摘要
Neonates are at an increased risk of bacterial sepsis due to the unique immune profile they display in the first months of life. We have established a protocol for studying the pathogenesis of E. coli O1:K1:H7, a serotype responsible for high mortality rates in neonates. Our method utilizes intravital imaging of neonatal pups at different time points during the progression of infection. This imaging, paralleled by measurement of bacteria in the blood, inflammatory profiling, and tissue histopathology, signifies a rigorous approach to understanding infection dynamics during sepsis. In the current report, we model two infectious inoculums for comparison of bacterial burdens and severity of disease. We find that subscapular infection leads to disseminated infection by 10 h post-infection. By 24 h, infection of luminescent E. coli was abundant in the blood, lungs, and other peripheral tissues. Expression of inflammatory cytokines in the lungs is significant at 24 h, and this is followed by cellular infiltration and evidence of tissue damage that increases with infectious dose. Intravital imaging does have some limitations. This includes a luminescent signal threshold and some complications that can arise with neonates during anesthesia. Despite some limitations, we find that our infection model offers an insight for understanding longitudinal infection dynamics during neonatal murine sepsis, that has not been thoroughly examined to date. We expect this model can also be adapted to study other critical bacterial infections during early life.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要