Comprehensive analysis of key genes associated with ceRNA networks in nasopharyngeal carcinoma based on bioinformatics analysis

CANCER CELL INTERNATIONAL(2020)

引用 9|浏览10
暂无评分
摘要
Background Nasopharyngeal carcinoma (NPC) is an epithelial malignancy with high morbidity rates in the east and southeast Asia. The molecular mechanisms of NPC remain largely unknown. We explored the pathogenesis, potential biomarkers, and prognostic indicators of NPC. Methods We analyzed mRNAs, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) in the whole transcriptome sequencing dataset of our hospital (five normal tissues vs. five NPC tissues) and six microarray datasets (62 normal tissues vs. 334 NPC tissues) downloaded from the Gene Expression Omnibus (GSE12452, GSE13597, GSE95166, GSE126683, and GSE70970, GSE43039). Differential expression analyses, gene ontology (GO) enrichment, kyoto encyclopedia of genes and genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) were conducted. The lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks were constructed using the miRanda and TargetScan database, and a protein–protein interaction (PPI) network of differentially expressed genes (DEGs) was built using Search Tool for the Retrieval of Interacting Genes (STRING) software. Hub genes were identified using Molecular Complex Detection (MCODE), NetworkAnalyzer, and CytoHubba. Results We identified 61 mRNAs, 14miRNAs, and 10 lncRNAs as shared DEGs related to NPC in seven datasets. Changes in NPC were enriched in the chromosomal region, sister chromatid segregation, and nuclear chromosome segregation. GSEA indicated that the mitogen-activated protein kinase (MAPK) pathway, phosphatidylinositol-3 OH kinase/protein kinase B (PI3K-Akt) pathway, apoptotic pathway, and tumor necrosis factor (TNF) were involved in the initiation and development of NPC. Finally, 20 hub genes were screened out via the PPI network. Conclusions Several DEGs and their biological processes, pathways, and interrelations were found in our current study by bioinformatics analyses. Our findings may offer insights into the biological mechanisms underlying NPC and identify potential therapeutic targets for NPC.
更多
查看译文
关键词
Nasopharyngeal carcinoma (NPC),Bioinformatics analysis,Gene Expression Omnibus (GEO),Differentially expressed genes (DEGs),Gene ontology (GO),Competing endogenous RNA (ceRNA) network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要