Deep computational pathology in breast cancer

SEMINARS IN CANCER BIOLOGY(2021)

引用 0|浏览2
暂无评分
摘要
Deep Learning (DL) algorithms are a set of techniques that exploit large and/or complex real-world datasets for cross-domain and cross-discipline prediction and classification tasks. DL architectures excel in computer vision tasks, and in particular image processing and interpretation. This has prompted a wave of disruptingly innovative applications in medical imaging, where DL strategies have the potential to vastly outperform human experts. This is particularly relevant in the context of histopathology, where whole slide imaging (WSI) of stained tissue in conjuction with DL algorithms for their interpretation, selection and cancer staging are beginning to play an ever increasing role in supporting human operators in visual assessments. This has the potential to reduce everyday workload as well as to increase precision and reproducibility across observers, centers, staining techniques and even pathologies. In this paper we introduce the most common DL architectures used in image analysis, with a focus on histopathological image analysis in general and in breast histology in particular. We briefly review how, state-of-art DL architectures compare to human performance on across a number of critical tasks such as mitotic count, tubules analysis and nuclear pleomorphism analysis. Also, the development of DL algorithms specialized to pathology images have been enormously fueled by a number of world-wide challenges based on large, multicentric image databases which are now publicly available. In turn, this has allowed most recent efforts to shift more and more towards semi-supervised learning methods, which provide greater flexibility and applicability. We also review all major repositories of manually labelled pathology images in breast cancer and provide an indepth discussion of the challenges specific to training DL architectures to interpret WSI data, as well as a review of the state-of-the-art methods for interpretation of images generated from immunohistochemical analysis of breast lesions. We finally discuss the future challenges and opportunities which the adoption of DL paradigms is most likely to pose in the field of pathology for breast cancer detection, diagnosis, staging and prognosis. This review is intended as a comprehensive stepping stone into the field of modern computational pathology for a transdisciplinary readership across technical and medical disciplines.
更多
查看译文
关键词
Digital pathology,Deep Learning,Breast cancer,Deep histology,Deep Neural Networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要