Synthesis Of Carboxylic Acid And Dimer Ester Surrogates To Constrain The Abundance And Distribution Of Molecular Products In Alpha-Pinene And Beta-Pinene Secondary Organic Aerosol

ENVIRONMENTAL SCIENCE & TECHNOLOGY(2020)

引用 27|浏览16
暂无评分
摘要
Liquid chromatography/negative electrospray ionization mass spectrometry [LC/(-)ESI-MS] is routinely employed to characterize the identity and abundance of molecular products in secondary organic aerosol (SOA) derived from monoterpene oxidation. Due to a lack of authentic standards, however, commercial terpenoic acids (e.g., cis-pinonic acid) are typically used as surrogates to quantify both monomeric and dimeric SOA constituents. Here, we synthesize a series of enantiopure, pinene-derived carboxylic acid and dimer ester homologues. We find that the (-)ESI efficiencies of the dimer esters are 19-36 times higher than that of cis-pinonic acid, demonstrating that the mass contribution of dimers to monoterpene SOA has been significantly overestimated in past studies. Using the measured (-)ESI efficiencies of the carboxylic acids and dimer esters as more representative surrogates, we determine that molecular products measureable by LC/(-)ESI-MS account for only 21.8 +/- 2.6% and 18.9 +/- 3.2% of the mass of SOA formed from ozonolysis of alpha-pinene and beta-pinene, respectively. The 28-36 identified monomers (C7-10H10-18O3-6) constitute 15.6-20.5% of total SOA mass, whereas only 1.3-3.3% of the SOA mass is attributable to the 46-62 identified dimers (C15-19H24-32O4-11). The distribution of identified alpha-pinene and beta-pinene SOA molecular products is examined as a function of carbon number (n(C)), average carbon oxidation state ((OS) over bar (C)), and volatility (C*). The observed order-of-magnitude difference in (-)ESI efficiency between monomers and dimers is expected to be broadly applicable to other biogenic and anthropogenic SOA systems analyzed via (-) or (+) LC/ESI-MS under various LC conditions, and demonstrates that the use of unrepresentative surrogates can lead to substantial systematic errors in quantitative LC/ESI-MS analyses of SOA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要