METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications.

THERANOSTICS(2020)

引用 119|浏览18
暂无评分
摘要
Aims: The N6-methyladenosine (m(6)A) modification plays an important role in various biological processes, but its role in atherosclerosis remains unknown. The aim of this study was to investigate the role and mechanism of m(6)A modification in endothelial cell inflammation and its influence on atherosclerosis development. Methods: We constructed a stable TNF-alpha-induced endothelial cell inflammation model and assessed the changes in the expression of m(6)A modification-related proteins to identify the major factors involved in this process. The m(6)A-modified mRNAs were identified by methylated RNA immunoprecipitation (RIP) sequencing and forkhead box O1 (FOXO1) was selected as a potential target. Through cytological experiments, we verified whether methyltransferase-like 14 (METTL14) regulates FOXO1 expression by regulating m(6)A-dependent mRNA and protein interaction. The effect of METTL14 on atherosclerosis development in vivo was verified using METTL14 knockout mice. Results: These findings confirmed that METTL14 plays major roles in TNF-alpha-induced endothelial cell inflammation. During endothelial inflammation, m(6)A modification of FOXO1, an important transcription factor, was remarkably increased. Moreover, METTL14 knockdown significantly decreased TNF-alpha-induced FOXO1 expression. RIP assay confirmed that METTL14 directly binds to FOXO1 mRNA, increases its m(6)A modification, and enhances its translation through subsequent YTH N6-methyladenosine RNA binding protein 1 recognition. Furthermore, METTL14 was shown to interact with FOXO1 and act directly on the promoter regions of VCAM-1 and ICAM-1 to promote their transcription, thus mediating endothelial cell inflammatory response. In vivo experiments showed that METTL14 gene knockout significantly reduced the development of atherosclerotic plaques. Conclusion: METTL14 promotes FOXO1 expression by enhancing its m(6)A modification and inducing endothelial cell inflammatory response as well as atherosclerotic plaque formation. Decreased expression of METTL14 can inhibit endothelial inflammation and atherosclerosis development. Therefore, METTL14 may serve as a potential target for the clinical treatment of atherosclerosis.
更多
查看译文
关键词
METTL14,m(6)A modification,endothelial inflammation,FOXO1,atherosclerosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要