Attachment Of Proteins To A Hydroxyl-Terminated Surface Eliminates The Stabilizing Effects Of Polyols

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 5|浏览0
暂无评分
摘要
The physics of proteins interacting with surfaces can differ significantly from those seen when the same proteins are free in bulk solution. As an example, we describe here the extent to which site-specific attachment to a chemically well-defined macroscopic surface alters the ability of several stabilizing and destabilizing cosolutes to modulate protein folding thermodynamics. We determined this via guanidinium denaturations performed in the presence of varying concentrations of cosolutes when proteins were either site-specifically attached to self-assembled monolayers on gold or free in bulk solution. Doing this we found that the extent to which guanidinium (a destabilizing Hofmeister cation), sulfate (a stabilizing Hofmeister anion), and urea (a neutral denaturant) alter the folding free energy remains indistinguishable whether proteins are surface-attached or free in bulk solution. In sharp contrast, however, neutral osmolytes sucrose and glycerol, which significantly stabilize proteins in bulk solution, do not measurably affect their stability when they are attached to a hydroxyl-terminated surface. In contrast, we recovered bulk solution-like stabilization when the attachment surface was instead carboxyl-terminated. It thus appears that chemistry-specific surface interactions can dramatically alter the way in which biomolecules interact with other components of the system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要