Fingering Instability In Marangoni Spreading On A Deep Layer Of Polymer Solution

PHYSICS OF FLUIDS(2020)

引用 16|浏览2
暂无评分
摘要
Spreading on the free surface of a complex fluid is ubiquitous in nature and industry, such as drug delivery, oil spill, and surface treatment with patterns. Here, we report on a fingering instability that develops during Marangoni spreading on a deep layer of the polymer solution. In particular, the wavelength depends on the molecular weight and concentration of the polymer solution. We use the transmission lattice method to characterize the free surface morphology during spreading and the finger height at the micron scale. We use the Maxwell model to explain the spreading radius, which is dominated by elasticity at small time scales and by viscous dissipation at large time scales. In a viscous regime, with consideration of shear thinning, the spreading radius follows the universal 3/4 power law. Our model suggests a more generalized law of the spreading radius than the previous laws for Newtonian fluids. Furthermore, we give a physical explanation on the origin of the fingering instability as due to normal stresses at high shear rates generating a high contact angle, providing a necessary condition for the fingering instability. The normal stress also generates the elastic deformation at the leading edge and so selects the wavelength of the fingering instability. Understanding the spreading mechanism on a layer of viscoelastic fluid has a particular implication in airway drug delivery and surface coating.
更多
查看译文
关键词
Wetting and Spreading
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要