Chondrogenic differentiation followed IGFBP3 loss in human endometrial mesenchymal stem cells.

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS(2020)

引用 3|浏览11
暂无评分
摘要
Insulin-like growth factor binding protein 3 (IGFBP3) is a multifunctional protein, able either to stimulate the cell growth or to promote apoptosis. In particular, IGFBP3 plays significant role in propagation of stress-induced senescence in human endometrium-derived mesenchymal stem cells (MESCs) (Vassilieva et al., 2020). We undertook CRISPR/Cas9-mediated IGFBP3 knockout in an effort to decelerate stress-induced senescence in MESCs, but, unexpectedly, IGFBP3-knockout MESCs culture acquired chondrocyte-like features, such as cell condensation and aggregation. We revealed that IGFBP3-knockout MESCs completely lost CD73 and CD90 MESCs positive surface markers, and significantly decreased expression of CD105 and CD146 MESCs positive surface markers. In addition, we found IGFBP3-knockout MESCs aggregates positively stained for Alcian Blue. We also detected expression of collagen type II in IGFBP3-knockout MESCs. The obtained results indicate that MESCs lost stemness after IGFBP3-knockout and underwent differentiation toward chondrogenic lineage. Our findings can enlighten IGFBP3 role in regulation of MESCs chondrogenesis. (C) 2020 Elsevier Inc. All rights reserved.
更多
查看译文
关键词
IGFBP3,Mesenchymal stem cells,Gene knockout,Differentiation,Multipotency,Chondrogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要