mRNA expression profile analysis reveals a C-MYC/miR-34a pathway involved in the apoptosis of diffuse large B-cell lymphoma cells induced by Yiqichutan treatment.

EXPERIMENTAL AND THERAPEUTIC MEDICINE(2020)

引用 4|浏览14
暂无评分
摘要
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of adult non-Hodgkin's lymphoma (NHL). While DLBCL is sensitive to chemotherapy, a certain percentage of patients with DLBCL experience relapse. Previous studies have indicated that Yiqichutan treatment, which was developed to treat NHL, can inhibit DLBCL cell growth, but the mechanism is not fully understood. The present study identified 991 differentially expressed mRNAs, with 498 upregulated and 493 downregulated (P<0.05), in SUDHL-6 cells exposed to Yiqichutan. The underlying pathways included the Jak/Stat and PI3K signaling pathways. In total, six representative mRNAs were selected for validation with reverse transcription-quantitative PCR (RT-qPCR), and a strong correlation was identified between the RT-qPCR results and microarray data. Since the transcription factor C-MYC is involved in both the Jak/Stat and PI3K signaling pathways, C-MYC and its associated microRNA (miR) were selected for further analysis. It was found that knockdown of C-MYC increased miR-34a expression levels, inhibited forkhead box P1 (Foxp1) expression levels and promoted DLBCL cell apoptosis. In addition, the miR-34a mimics further enhanced the role of C-MYC knockdown. It was demonstrated that, the expression levels of apoptotic factors Bax and poly (ADP-ribose) polymerase were significantly upregulated with C-MYC knockdown and miR-34a mimics in SUDHL-6 cells, while the Bcl2 expression level was significantly reduced. Moreover, Yiqichutan treatment increased miR-34a expression levels and induced apoptosis, as well as reducing Foxp1 expression level in SUDHL-6 cells. Therefore, the present results suggested that Yiqichutan treatment affected DLBCL cells via several signaling pathways. Furthermore, Yiqichutan may inhibit the proliferation of DLBCL cells by blocking the C-MYC/miR-34a signaling pathway.
更多
查看译文
关键词
microRNA-34a,C-MYC,Yiqichutan,microarray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要