Molecular Profiling Of Non-Small Cell Lung Cancer

PLOS ONE(2020)

引用 16|浏览17
暂无评分
摘要
Lung cancer is generally treated with conventional therapies, including chemotherapy and radiation. These methods, however, are not specific to cancer cells and instead attack every cell present, including normal cells. Personalized therapies provide more efficient treatment options as they target the individual's genetic makeup. The goal of this study was to identify the frequency of causal genetic mutations across a variety of lung cancer subtypes in the earlier stages. 833 samples of non-small cell lung cancer from 799 patients who received resection of their lung cancer, were selected for molecular analysis of six known mutations, includingEGFR,KRAS,BRAF,PIK3CA,HER2 and ALK. A SNaPshot assay was used for point mutations and fragment analysis searched for insertions and deletions.ALKwas evaluated by IHC +/- FISH. Statistical analysis was performed to determine correlations between molecular and clinical/pathological patient data. None of the tested variants were identified in most (66.15%) of cases. The observed frequencies among the total samples vs. only the adenocarcinoma cases were notable different, with the highest frequency being theKRASmutation (24.49% vs. 35.55%), followed byEGFR(6.96% vs. 10.23%),PIK3CA(1.20% vs. 0.9%),BRAF(1.08% vs. 1.62%),ALK(0.12% vs. 0.18%), while the lowest was theHER2mutation (0% for both). The statistical analysis yielded correlations between presence of a mutation with gender, cancer type, vascular invasion and smoking history. The outcome of this study will provide data that helps stratify patient prognosis and supports development of more precise treatments, resulting in improved outcomes for future lung cancer patients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要