Electro-magneto-mechanically response of polycrystalline materials: Computational homogenization via the Virtual Element Method

Computer Methods in Applied Mechanics and Engineering(2021)

引用 13|浏览4
暂无评分
摘要
This work presents a study on the computational homogenization of electro-magneto-mechanically coupled problems through the Virtual Element Method (VEM). VE-approaches have great potential for the homogenization of the physical properties of heterogeneous polycrystalline microstructures with anisotropic grains. The flexibility in element shapes can be exploited for creating VE-mesh with a significant lower number of degrees of freedom if compared to finite element (FE) meshes, while maintaining a high accuracy. Evidence that VE-approaches outperform FEM is available in the literature, but only addressing purely-mechanic problems (i.e. elastic properties) and transversely anisotropic materials. The aim of this work is twofold. On one hand, the study compares VE-and FE-based numerical homogenization schemes for electro-mechanically coupled problems for different crystal lattice structures and degrees of elastic anisotropy. Within all considered materials, the VE-approach outperforms the FE-approach for the same number of nodes. On the other hand, a hybrid microstructure made up by both electro-mechanical and magneto-mechanical grains is investigated resulting in an electro-magneto-mechanically coupled microstructure. Again, VEM provides a more accurate solution strategy.
更多
查看译文
关键词
Computational homogenization,Virtual Element Method (VEM),Microstructure,Electro-magneto-mechanics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要