Magnetic Skyrmions In A Hall Balance With Interfacial Canted Magnetizations

ADVANCED MATERIALS(2020)

引用 25|浏览98
暂无评分
摘要
Magnetic skyrmions are attracting interest as efficient information-storage devices with low energy consumption, and have been experimentally and theoretically investigated in multilayers including ferromagnets, ferrimagnets, and antiferromagnets. The 3D spin texture of skyrmions demonstrated in ferromagnetic multilayers provides a powerful pathway for understanding the stabilization of ferromagnetic skyrmions. However, the manipulation mechanism of skyrmions in antiferromagnets is still lacking. A Hall balance with a ferromagnet/insulating spacer/ferromagnet structure is considered to be a promising candidate to study skyrmions in synthetic antiferromagnets. Here, high-density Neel-type skyrmions are experimentally observed at zero field and room temperature by Lorentz transmission electron microscopy in a Hall balance (core structure [Co/Pt](n)/NiO/[Co/Pt](n)) with interfacial canted magnetizations because of interlayer ferromagnetic/antiferromagnetic coupling between top and bottom [Co/Pt](n)multilayers, where the Co layers in [Co/Pt](n)are always ferromagnetically coupled. Micromagnetic simulations show that the generation and density of skyrmions are strongly dependent on interlayer exchange coupling (IEC) and easy-axis orientation. Direct experimental evidence of skyrmions in synthetic antiferromagnets is provided, suggesting that the proposed approach offers a promising alternative mechanism for room-temperature spintronics.
更多
查看译文
关键词
interfacial canted magnetizations, interlayer exchange coupling, skyrmions, synthetic antiferromagnets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要