Hydroxyapatite based biocomposite scaffold: A highly biocompatible material for bone regeneration.

Ceng Li, Weiguang Qin,Sivalingam Lakshmanan,Xiaohui Ma, Xiaowei Sun, Bo Xu

SAUDI JOURNAL OF BIOLOGICAL SCIENCES(2020)

引用 12|浏览2
暂无评分
摘要
The conventional approaches for treating bone defects such as autografts donor tissue shortages and allografts transmission of diseases pose many shortcomings. The objective of this study was to design a nano strontium/magnesium doped hydroxyapatite (Sr/Mg-HA) with chitosan (CTS) and multi-walled carbon nanotubes (MWCNT) (Sr/Mg-HA/MWCNT/CTS) biocomposite was created to support the growth of osteoblasts using a solvent evaporation method. To help the growth of osteoblasts, a solvent evaporation technique was used to design a nano strontium/magnesium doped hydroxyapatite with chitosan and multi-walled carbon nanotubes biocomposite. We studied the biocompatibility and efficiency in vitro of biocomposite following physicochemical analyzes. Tests of biocompatibility, cell proliferation, mineralization, and osteogenic differentiation have shown that in-vitro safety and effectiveness of biocomposite are good. The performance of biocomposite was more efficient in in-vitro as well as in vivo experiments than in Sr/Mg-HA nanoparticles. Briefly, the Sr/Mg-HA/MWCNT/CTS biocomposite is an ideal candidate for effective bone repair in clinics with excellent mechanical properties with durable multibiofunctional antibacterial properties and osteoinductivity. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
更多
查看译文
关键词
Antibacterial activity,Bone,Biocompatibility,Hydroxyapatite,Osteoblast cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要