HCDA: Efficient Pairing-Free Homographic Key Management for Dynamic Cross-Domain Authentication in VANETs.

SYMMETRY-BASEL(2020)

引用 10|浏览9
暂无评分
摘要
Emerging as the effective strategy of intelligent transportation system (ITS), vehicular ad hoc networks (VANETs) have the capacity of drastically improving the driving experience and road safety. In typical VANET scenarios, high mobility and volatility of vehicles result in dynamic topology of vehicular networks. That is, individual vehicle may pass through the effective domain of multiple neighboring road-side-units (RSUs) during a comparatively short time interval. Hence, efficient and low-latency cross-domain verification with all the successive RSUs is of significance. Recently, a lot of research on VANET authentication and key distribution was presented, while the critical cross-domain authentication (CDA) issue has not been properly addressed. Particularly, the existing CDA solutions mainly reply on the acquired confidential keying information from the neighboring entities (RSUs and vehicles), while too much trustworthiness is granted to the involved RSUs. Please note that the RSUs are distributively located and may be compromised or disabled by adversary, thus vital vehicle information may be revealed. Furthermore, frequent data interactions between RSUs and cloud server are always the major requisite so as to achieve mutual authentication with cross-domain vehicles, which leads to heavy bandwidth consumption and high latency. In this paper, we address the above VANET cross-domain authentication issue under the novel RSU edge networks assumption. Please note that RSUs are assumed to be semi-trustworthy entity in our design, where critical vehicular keying messages remain secrecy. Homomorphic encryption design is applied for all involved RSUs and vehicles. In this way, successive RSUs could efficiently verify the cross-domain vehicle with the transited certificate from the neighbor RSUs and vehicle itself, while the identity and secrets of each vehicle is hidden all the time. Afterwards, dynamic updating towards the anonymous vehicle identity is conducted upon validation, where conditional privacy preserving is available. Moreover, pairing-free mutual authentication method is used for efficiency consideration. Formal security analysis is given, proving that the HCDA mechanism yields desirable security properties on VANET cross domain authentication issue. Performance discussions demonstrate efficiency of the proposed HCDA scheme compared with the state-of-the-art.
更多
查看译文
关键词
vehicular ad hoc networks (VANETs),homographic encryption,cross-domain authentication,dynamic key updating
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要