Remarkable Sers Detection By Hybrid Cu2o/Ag Nanospheres

ACS omega(2020)

引用 29|浏览14
暂无评分
摘要
Cu2O nanospheres (NSs) were synthesized by modifying the glucose reduction method. Based on this method, Cu2O/Au (Ag) NSs were further prepared by in situ reduction of HAuCl4 (via electron beam evaporation of Ag). With Rhodamine 6G (R6G) as probe, the surface-enhanced Raman scattering (SERS) characteristics of the three samples were systematically studied. The experiment results showed that the enhancement factor (EF) of Cu2O/Au (Ag) NSs as 1.25 x 10(8) (2.74 x 10(9) ) and the ultralow detection limit (LOD) as 8.07 x 10(-12) (1.13 x 10(-13)) M for R6G. The excellent performance of SERS may be due to the charge transfer (CT) between metal-semiconductor (MS) molecules and the strong electromagnetic field (E-field) of each hot spot. In addition, discrete dipole approximation (DDA) simulations were performed to simulate the E-field enhancement of the Cu2O and Cu2O/Au (Ag) NSs in a three-dimensional (3D) configuration. These further supported that the high SERS performance for R6G is because of the powerful E-field coupling between neighboring Au (Ag) NPs and the surface plasmon resonance (SPR) effect. The Cu2O/Ag NSs have potential in applications such as biomedicine, food safety, and environmental monitoring because of their high sensitivity and good reproducibility.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要