Structural Basis Of Salm3 Dimerization And Synaptic Adhesion Complex Formation With Ptp Sigma

SCIENTIFIC REPORTS(2020)

引用 3|浏览4
暂无评分
摘要
Synaptic adhesion molecules play an important role in the formation, maintenance and refinement of neuronal connectivity. Recently, several leucine rich repeat (LRR) domain containing neuronal adhesion molecules have been characterized including netrin G-ligands, SLITRKs and the synaptic adhesion-like molecules (SALMs). Dysregulation of these adhesion molecules have been genetically and functionally linked to various neurological disorders. Here we investigated the molecular structure and mechanism of ligand interactions for the postsynaptic SALM3 adhesion protein with its presynaptic ligand, receptor protein tyrosine phosphatase sigma (PTP sigma). We solved the crystal structure of the dimerized LRR domain of SALM3, revealing the conserved structural features and mechanism of dimerization. Furthermore, we determined the complex structure of SALM3 with PTP sigma using small angle X-ray scattering, revealing a 2:2 complex similar to that observed for SALM5. Solution studies unraveled additional flexibility for the complex structure, but validated the uniform mode of action for SALM3 and SALM5 to promote synapse formation. The relevance of the key interface residues was further confirmed by mutational analysis with cellular binding assays and artificial synapse formation assays. Collectively, our results suggest that SALM3 dimerization is a pre-requisite for the SALM3-PTP sigma complex to exert synaptogenic activity.
更多
查看译文
关键词
Synaptic adhesion,SALM,leucine rich repeat,protein tyrosine phosphatase,crystal structure,SAXS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要