Detection of early cartilage damage

semanticscholar(2018)

引用 0|浏览1
暂无评分
摘要
Objectives The purpose was to implement a fast 3D glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) sequence at 7 T, test stability and reproducibility in cartilage in the knee in healthy volunteers, and evaluate clinical applicability in cartilage repair patients. Methods Experiments were carried out on a 7-Tscanner using a volume transmit coil and a 32-channel receiver wrap-around knee coil. The 3D gagCESTmeasurement had an acquisition time of 7min. Signal stability and reproducibility of the GAG effect were assessed in eight healthy volunteers. Clinical applicability of the method was demonstrated in five patients before cartilage repair surgery. Results Coefficient of variation of the gagCESTsignal was 1.9%. The reproducibility of the GAG effect measurements was good in the medial condyle (ICC = 0.87) and excellent in the lateral condyle (ICC = 0.97). GAG effect measurements in healthy cartilage ranged from 2.6%-12.4% compared with 1.3%-5.1% in damaged cartilage. Difference in GAG measurement between healthy cartilage and damaged cartilage was significant (p < 0.05). Conclusions A fast 3D gagCESTsequence was applied at 7 T for use in cartilage in the knee, acquired within a clinically feasible scan time of 7 min. We demonstrated that the method has high stability, reproducibility and clinical applicability. Key Points • gagCEST measurements are stable and reproducible • A non-invasive GAG measurement with gagCEST can be acquired in 7 min • gagCEST is able to discriminate between healthy and damaged cartilage
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要