RACK 1 cooperates with NRAS Q 61 K to promote melanoma in vivo

C. Campagne, E. Reyes-Gomez, M. E. Picco, S. Loiodice, P. Salaun, J. Ezagal, F. Bernex, S. Pons, D. Esquerre,E. Bourneuf, J. Estell, U. Maskos, P. Lopez-Bergami,G. Aubin-Houzelstein,J. J. Panthier,G. Egidy

semanticscholar(2019)

引用 0|浏览5
暂无评分
摘要
Melanoma is the deadliest skin cancer. RACK1 (Receptor for activated protein kinase C) protein was proposed as a biological marker of melanoma in human and domestic animal species harboring spontaneous melanomas. As a scaffold protein, RACK1 is able to coordinate the interaction of key signaling molecules implicated in both physiological cellular functions and tumorigenesis. A role for RACK1 in rewiring ERK and JNK signaling pathways in melanoma cell lines had been proposed. Here, we used a genetic approach to test this hypothesis in vivo in the mouse. We show that Rack1 knock-down in the mouse melanoma cell line B16 reduces invasiveness and induces cell differentiation. We have developed the first mouse model for RACK1 gain of function, Tyr::Rack1-HA transgenic mice, targeting RACK1 to melanocytes in vivo. RACK1 overexpression was not sufficient to initiate melanomas despite activated ERK and AKT. However, in a context of melanoma predisposition, RACK1 overexpression reduced latency and increased incidence and metastatic rate. In primary melanoma cells from Tyr::Rack1-HA, Tyr::NRas⁠ Q61K mice, activated JNK (c-Jun N-terminal kinase) and activated STAT3 (signal transducer and activator of transcription 3) acted as RACK1 oncogenic partners in tumoral progression. A sequential and coordinated activation of ERK, JNK and STAT3 with RACK1 is shown to accelerate aggressive melanoma development in vivo.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要