Heart rhythm complexity as predictors for the prognosis of end-stage renal disease patients undergoing hemodialysis

BMC Nephrology(2020)

引用 6|浏览4
暂无评分
摘要
Background Heart rhythm complexity, a measure of heart rate dynamics and a risk predictor in various clinical diseases, has not been systematically studied in patients with end-stage renal disease. The aim of this study is to investigate the heart rhythm complexity and its prognostic value for mortality in end-stage renal disease patients undergoing hemodialysis. Methods To assess heart rhythm complexity and conventional heart rate variability measures, 4-h continuous electrocardiography for a retrospective cohort of 202 ostensibly healthy control subjects and 51 hemodialysis patients with end-stage renal disease were analyzed. Heart rhythm complexity was quantified by the complexity index from the measurement of the multiscale entropy profile. Results During a follow-up of 13 months, 8 people died in the patient group. Values of either traditional heart rate variability measurements or complexity indices were found significantly lower in patients than those in healthy controls. In addition, the complexity indices (Area 1–5, Area 6–15 and Area 6–20) in the mortality group were significantly lower than those in the survival group, while there were no significant differences in traditional heart rate variability parameters between the two groups. In receiver operating characteristic curve analysis, Area 6–20 (AUC = 0.895, p < 0.001) showed the strongest predictive power between mortality and survival groups. Conclusion The results suggest that heart rhythm complexity is impaired for patients with end-stage renal disease. Furthermore, the complexity index of heart rate variability quantified by multiscale entropy may be a powerful independent predictor of mortality in end-stage renal disease patients undergoing hemodialysis.
更多
查看译文
关键词
Complexity,Multiscale entropy,End-stage renal disease,Autonomic nervous system,Heart rate variability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要