Study of Foam Fracturing for Enhanced Geothermal Systems Using Model Material

semanticscholar(2020)

引用 0|浏览2
暂无评分
摘要
Foam fracturing is considered a potential approach to address water concerns with hydraulic fracturing in the development of enhanced geothermal systems (EGS). In many EGS sites, water required for hydraulic fracturing is either unavailable, extremely costly or environmentally unsustainable. This paper presents work performed in the first year of a project sponsored by the U.S. DOE GTO Waterless Stimulation Initiative that investigates foam fracturing as an alternative approach to hydraulic fracturing. One element of this work explores foam formulations that are suitable for EGS conditions. A separate paper submitted to this workshop covers the relevant work on foam characterization (Thakore et al., 2020). This paper describes the development of an experimental setup for studying the applicability of foam fluids for hydraulic fracturing along with enhanced fracture efficiency through cyclic pressurization. The system is equipped with pulse rate automation, dual pulse valves for enhanced pulsation amplitudes, and other functions. It can perform static injection at a given pressurization rate, and pulsed injection at specified pulse size and rate. Both single-phase and foamed fluids can be used. Initial experimental results of foam fracturing using cement as a model material are reported. The observations from the experimental work will be presented and discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要