Number : WUCSE-2013-75 2013 Self-Adapting MAC Layer for Wireless Sensor Networks

semanticscholar(2019)

引用 0|浏览2
暂无评分
摘要
The integration of wireless sensors with mobile phones is gaining momentum as an enabling platform for numerous emerging applications. These mobile systems face dynamic environments where both application requirements and ambient wireless conditions change frequently. Despite the existence of many MAC protocols however, none can provide optimal performance along multiple dimensions, in particular when the conditions are frequently changing. Instead of pursuing a one-MAC-fit all approach we present a Self-Adapting MAC Layer (SAML) comprising (1) a Reconfigurable MAC Architecture (RMA) that can switch to different MAC protocols at run time and (2) a learning-based MAC Selection Engine that selects the protocol most suitable for the current condition and requirements. As the ambient conditions or application requirements change SAML dynamically switches MAC protocols to gain the desired performance. To the application SAML appears as a traditional MAC protocol and its benefits are realized without troubling the application with the underlying complexity. To test the system we implement SAML in TinyOS 2.x and realize three prototypes containing up to five MACs. We evaluate the system in controlled tests and real-world environments using a new gateway device that integrates a 802.15.4 radio with Android phones. Our experimental results show that SAML provides an efficient and reliable MAC switching, while adheres to the application specified requirements. Type of Report: Other Department of Computer Science & Engineering Washington University in St. Louis Campus Box 1045 St. Louis, MO 63130 ph: (314) 935-6160 Self-Adapting MAC Layer for Wireless Sensor Networks Mo Sha1, Rahav Dor1, Gregory Hackmann1, Chenyang Lu1, Tae-Suk Kim2, Taerim Park2 Department of Computer Science and Engineering, Washington University in St. Louis, USA Samsung Advanced Institute of Technology, Samsung Electronics, South Korea Abstract—The integration of wireless sensors with mobile phones is gaining momentum as an enabling platform for numerous emerging applications. These mobile systems face dynamic environments where both application requirements and ambient wireless conditions change frequently. Despite the existence of many MAC protocols however, none can provide optimal performance along multiple dimensions, in particular when the conditions are frequently changing. Instead of pursuing a oneMAC-fit all approach we present a Self-Adapting MAC Layer (SAML) comprising (1) a Reconfigurable MAC Architecture (RMA) that can switch to different MAC protocols at run time and (2) a learning-based MAC Selection Engine that selects the protocol most suitable for the current condition and requirements. As the ambient conditions or application requirements change SAML dynamically switches MAC protocols to gain the desired performance. To the application SAML appears as a traditional MAC protocol and its benefits are realized without troubling the application with the underlying complexity. To test the system we implement SAML in TinyOS 2.x and realize three prototypes containing up to five MACs. We evaluate the system in controlled tests and real-world environments using a new gateway device that integrates a 802.15.4 radio with Android phones. Our experimental results show that SAML provides an efficient and reliable MAC switching, while adheres to the application specified requirements.The integration of wireless sensors with mobile phones is gaining momentum as an enabling platform for numerous emerging applications. These mobile systems face dynamic environments where both application requirements and ambient wireless conditions change frequently. Despite the existence of many MAC protocols however, none can provide optimal performance along multiple dimensions, in particular when the conditions are frequently changing. Instead of pursuing a oneMAC-fit all approach we present a Self-Adapting MAC Layer (SAML) comprising (1) a Reconfigurable MAC Architecture (RMA) that can switch to different MAC protocols at run time and (2) a learning-based MAC Selection Engine that selects the protocol most suitable for the current condition and requirements. As the ambient conditions or application requirements change SAML dynamically switches MAC protocols to gain the desired performance. To the application SAML appears as a traditional MAC protocol and its benefits are realized without troubling the application with the underlying complexity. To test the system we implement SAML in TinyOS 2.x and realize three prototypes containing up to five MACs. We evaluate the system in controlled tests and real-world environments using a new gateway device that integrates a 802.15.4 radio with Android phones. Our experimental results show that SAML provides an efficient and reliable MAC switching, while adheres to the application specified requirements.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要