An "Energy-Auxotroph"Escherichia Coliprovides An In Vivo Platform For Assessing Nadh Regeneration Systems

BIOTECHNOLOGY AND BIOENGINEERING(2020)

引用 14|浏览8
暂无评分
摘要
An efficient in vivo regeneration of the primary cellular resources NADH and ATP is vital for optimizing the production of value-added chemicals and enabling the activity of synthetic pathways. Currently, such regeneration routes are tested and characterized mainly in vitro before being introduced into the cell. However, in vitro measurements could be misleading as they do not reflect enzyme activity under physiological conditions. Here, we construct an in vivo platform to test and compare NADH regeneration systems. By deleting dihydrolipoyl dehydrogenase inEscherichia coli, we abolish the activity of pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase. When cultivated on acetate, the resulting strain is auxotrophic to NADH and ATP: acetate can be assimilated via the glyoxylate shunt but cannot be oxidized to provide the cell with reducing power and energy. This strain can, therefore, serve to select for and test different NADH regeneration routes. We exemplify this by comparing several NAD-dependent formate dehydrogenases and methanol dehydrogenases. We identify the most efficient enzyme variants under in vivo conditions and pinpoint optimal feedstock concentrations that maximize NADH biosynthesis while avoiding cellular toxicity. Our strain thus provides a useful platform for comparing and optimizing enzymatic systems for cofactor regeneration under physiological conditions.
更多
查看译文
关键词
auxotrophy, biosensor, energy metabolism, in vivo selection, methylotrophy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要