Knockdown of KRT17 decreases osteosarcoma cell proliferation and the Warburg effect via the AKT/mTOR/HIF1α pathway.

Xianke Yan,Chao Yang,Wei Hu, Tao Chen, Qi Wang, Feng Pan,Bing Qiu,Bensen Tang

ONCOLOGY REPORTS(2020)

引用 25|浏览4
暂无评分
摘要
Keratins are fibrous structural proteins that serve essential roles in forming the stratum corneum and protect the cells in this layer of skin from damage. Keratin 17 (KRT17) is a key member of the keratins, and dysregulated expression of KRT17 has been reported in various types of cancer, such as lung and gastric cancer. The present study aimed to identify the role of KRT17 in osteosarcoma and the underlying molecular mechanism. The expression of KRT17 in osteosarcoma tissues and cell lines was detected using reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The effects of KRT17 on osteosarcoma cell proliferation and the Warburg effect in vitro were detected using CCK-8 and colony formation assays, cell cycle distribution analysis and metabolic measures. The effects of KRT17 on osteosarcoma cell proliferation in vivo were detected using a subcutaneous tumorigenesis model. The association between KRT17 and the AKT/mTOR/hypoxia-inducible factor 1 alpha (HIF1 alpha) pathway was detected using RT-qPCR and western blotting. The results demonstrated that KRT17 was highly expressed in osteosarcoma tissues and cell lines. Knockdown of KRT17 decreased osteosarcoma cell proliferation and colony formation, induced G(1) phase arrest and inhibited glycolysis in vitro. Similarly, the suppression of KRT17 decreased osteosarcoma tumor growth in vivo. Knockdown of KRT17 decreased the expression of phosphorylated (p)-AKT, p-mTOR, HIF1 alpha and the target gene of HIF1 alpha glucose transporter 1. Restoring the expression of p-AKT, p-mTOR or HIF1 alpha reversed the effect of KRT17 inhibition on cell proliferation and glycolysis. These results indicated that knockdown of KRT17 may be an effective method for treating osteosarcoma through inhibiting osteosarcoma cell proliferation and the Warburg effect by suppressing the AKT/mTOR/HIF1 alpha pathway.
更多
查看译文
关键词
keratin 17,osteosarcoma,Warburg effect,proliferation,AKT,mTOR,hypoxia-inducible factor 1 alpha
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要