Estimation of pure quantum states in high dimension at the limit of quantum accuracy through complex optimization and statistical inference

SCIENTIFIC REPORTS(2020)

引用 11|浏览0
暂无评分
摘要
Quantum tomography has become a key tool for the assessment of quantum states, processes, and devices. This drives the search for tomographic methods that achieve greater accuracy. In the case of mixed states of a single 2-dimensional quantum system adaptive methods have been recently introduced that achieve the theoretical accuracy limit deduced by Hayashi and Gill and Massar. However, accurate estimation of higher-dimensional quantum states remains poorly understood. This is mainly due to the existence of incompatible observables, which makes multiparameter estimation difficult. Here we present an adaptive tomographic method and show through numerical simulations that, after a few iterations, it is asymptotically approaching the fundamental Gill–Massar lower bound for the estimation accuracy of pure quantum states in high dimension. The method is based on a combination of stochastic optimization on the field of the complex numbers and statistical inference, exceeds the accuracy of any mixed-state tomographic method, and can be demonstrated with current experimental capabilities. The proposed method may lead to new developments in quantum metrology.
更多
查看译文
关键词
Quantum information,Quantum metrology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要