Characterization Of Locally Excited And Charge-Transfer States Of The Anticancer Drug Lapatinib By Ultrafast Spectroscopy And Computational Studies

CHEMISTRY-A EUROPEAN JOURNAL(2020)

引用 11|浏览17
暂无评分
摘要
Lapatinib (LAP) is an anticancer drug, which is metabolized to theN- and O-dealkylated products (N-LAP andO-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP,N-LAP andO-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (lambda(max)=550 nm) to ICT states (lambda(max)=480 nm) in solution, whereas within HSA the LE species become stabilized and live much longer (up to the ns scale). Interestingly, molecular dynamics simulation studies confirm that the coplanar orientation is preferred for LAP (or to a lesser extentN-LAP) within HSA, explaining the experimental results.
更多
查看译文
关键词
anticancer drugs, femtosecond transient absorption, fluorescence, lapatinib, molecular dynamics simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要