Characterisation of the Effect of the Spatial Organisation of Hemicellulases on the Hydrolysis of Plant Biomass Polymer.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2020)

引用 5|浏览13
暂无评分
摘要
Synergism between enzymes is of crucial importance in cell metabolism. This synergism occurs often through a spatial organisation favouring proximity and substrate channelling. In this context, we developed a strategy for evaluating the impact of the geometry between two enzymes involved in nature in the recycling of the carbon derived from plant cell wall polymers. By using an innovative covalent association process using two protein fragments, Jo and In, we produced two bi-modular chimeric complexes connecting a xylanase and a xylosidase, involved in the deconstruction of xylose-based plant cell wall polymer. We first show that the intrinsic activity of the individual enzymes was preserved. Small Angle X-rays Scattering (SAXS) analysis of the complexes highlighted two different spatial organisations in solution, affecting both the distance between the enzymes (53 angstrom and 28 angstrom) and the distance between the catalytic pockets (94 angstrom and 75 angstrom). Reducing sugar and HPAEC-PAD analysis revealed different behaviour regarding the hydrolysis of Beechwood xylan. After 24 h of hydrolysis, one complex was able to release a higher amount of reducing sugar compare to the free enzymes (i.e., 15,640 and 14,549 mu M of equivalent xylose, respectively). However, more interestingly, the two complexes were able to release variable percentages of xylooligosaccharides compared to the free enzymes. The structure of the complexes revealed some putative steric hindrance, which impacted both enzymatic efficiency and the product profile. This report shows that controlling the spatial geometry between two enzymes would help to better investigate synergism effect within complex multi-enzymatic machinery and control the final product.
更多
查看译文
关键词
xylanase,xylosidase,Bio Molecular Welding,spatial proximity,enzyme engineering,synergism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要