Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity.

PLOS GENETICS(2020)

引用 10|浏览1
暂无评分
摘要
Cell polarity underlies key processes in all cells, including growth, differentiation and division. In the bacterium Myxococcus xanthus, front-rear polarity is crucial for motility. Notably, this polarity can be inverted, independent of the cell-cycle, by chemotactic signaling. However, a precise understanding of the protein network that establishes polarity and allows for its inversion has remained elusive. Here, we use a combination of quantitative experiments and data-driven theory to unravel the complex interplay between the three key components of the M. xanthus polarity module. By studying each of these components in isolation and their effects as we systematically reconstruct the system, we deduce the network of effective interactions between the polarity proteins. RomR lies at the root of this network, promoting polar localization of the other components, while polarity arises from interconnected negative and positive feedbacks mediated by the small GTPase MglA and its cognate GAP MglB, respectively. We rationalize this network topology as operating as a spatial toggle switch, providing stable polarity for persistent cell movement whilst remaining responsive to chemotactic signaling and thus capable of polarity inversions. Our results have implications not only for the understanding of polarity and motility in M. xanthus but also, more broadly, for dynamic cell polarity. Author summary The asymmetric localization of cellular components (polarity) is at the core of many important cellular functions including growth, division, differentiation and motility. However, important questions still remain regarding the design principles underlying polarity networks and how their activity can be controlled in space and time. We use the rod-shaped bacterium Myxococcus xanthus as a model to study polarity and its regulation. Like many bacteria, in M. xanthus a well-defined front-rear polarity axis enables efficient translocation. This polarity axis is defined by asymmetric polar localization of a switch-like GTPase and its cognate regulators, and can be reversed in response to signaling cues. Here we use a combination of quantitative experiments and data-driven theory to deduce the network of interactions among the M. xanthus polarity proteins and to show how the combination of positive- and negative-feedback interactions give rise to asymmetric polar protein localization. We rationalize this network topology as operating as a spatial toggle switch, providing stable polarity for persistent cell movement whilst remaining responsive to chemotactic signaling and capable of polarity inversions. Our results have broader implications for our understanding of dynamic cell polarity and GTPase regulation in both bacteria and eukaryotic cells.
更多
查看译文
关键词
cell,protein-protein
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要