Compact SQUID realized in a double layer graphene heterostructure

arxiv(2020)

引用 10|浏览39
暂无评分
摘要
Two-dimensional systems that host one-dimensional helical states are exciting from the perspective of scalable topological quantum computation when coupled with a superconductor. Graphene is particularly promising for its high electronic quality, versatility in van der Waals heterostructures and its electron and hole-like degenerate 0$th$ Landau level. Here, we study a compact double layer graphene SQUID (superconducting quantum interference device), where the superconducting loop is reduced to the superconducting contacts, connecting two parallel graphene Josephson junctions. Despite the small size of the SQUID, it is fully tunable by independent gate control of the Fermi energies in both layers. Furthermore, both Josephson junctions show a skewed current phase relationship, indicating the presence of superconducting modes with high transparency. In the quantum Hall regime we measure a well defined conductance plateau of 2$e^2/h$ an indicative of counter propagating edge channels in the two layers. Our work opens a way for engineering topological superconductivity by coupling helical edge states, from graphene's electron-hole degenerate 0$th$ Landau level via superconducting contacts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要