Photothermal Bottom-up Graphene Nanoribbon Growth Kinetics.

NANO LETTERS(2020)

引用 13|浏览31
暂无评分
摘要
We present laser-induced photothermal synthesis of atomically precise graphene nanoribbons (GNRs). The kinetics of photothermal bottom-up GNR growth are unravelled by in situ Raman spectroscopy carried out in ultrahigh vacuum. We photothermally drive the reaction steps by short periods of laser irradiation and subsequently analyze the Raman spectra of the reactants in the irradiated area. Growth kinetics of chevron GNRs (CGNRs) and seven atoms wide armchair GNRs (7-AGNRs) is investigated. The reaction rate constants for polymerization, cyclodehydrogenation, and interribbon fusion are experimentally determined. We find that the limiting rate constants for CGNR growth are several hundred times smaller than for 7-AGNR growth and that interribbon fusion is an important elementary reaction occurring during 7-AGNR growth. Our work highlights that photothermal synthesis and in situ Raman spectroscopy are a powerful tandem for the investigation of on-surface reactions.
更多
查看译文
关键词
graphene nanoribbons,photothermal,synthesis,Raman spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要