Characterization of Cooperators in Quorum Sensing With 2D Molecular Signal Analysis

IEEE Transactions on Communications(2021)

引用 3|浏览16
暂无评分
摘要
In quorum sensing (QS), bacteria exchange molecular signals to work together. An analytically-tractable model is presented for characterizing QS signal propagation within a population of bacteria and the number of responsive cooperative bacteria (i.e., cooperators) in a two-dimensional (2D) environment. Unlike prior works with a deterministic topology and a simplified molecular propagation channel, this work considers continuous emission, diffusion, degradation, and reception among randomly-distributed bacteria. Using stochastic geometry, the 2D channel response and the corresponding probability of cooperation at a bacterium are derived. Based on this probability, new expressions are derived for the moment generating function and different orders of moments of the number of cooperators. The analytical results agree with the simulation results obtained by a particle-based method. In addition, the Poisson and Gaussian distributions are compared to approximate the distribution of the number of cooperators and the Poisson distribution provides the best overall approximation. The derived channel response can be generally applied to any molecular communication model where single or multiple transmitters continuously release molecules into a 2D environment. The derived statistics of the number of cooperators can be used to predict and control the QS process, e.g., predicting and decreasing the likelihood of biofilm formation.
更多
查看译文
关键词
Quorum sensing,molecular communication,2D channel response,cooperative bacteria
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要