Rapid Determination of Uranium Isotopic Abundance from Cotton Swipes: Direct Extraction via a Planar Surface Reader and Coupling to a Microplasma Ionization Source.

ANALYTICAL CHEMISTRY(2020)

引用 15|浏览8
暂无评分
摘要
The collection of solid particulates and liquids from surfaces by the use of cloth swipes is fairly ubiquitous. In such methods, there is a continuous concern regarding the ability to locate and quantitatively sample the analyte species from the material. In this effort, we demonstrate the initial coupling of an Advion Plate Express plate reader to a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source with an Orbitrap mass spectrometer to perform uranium isotopic analyses of solution residues on cotton swipes. The Plate Express employs a sampling probe head to engage and seal against the swipe surface. Subsequentially, the analyte residues are desorbed and transported within a 2% HNO3 electrolyte flow to the ionization source. Quantitative recoveries were observed following a single 30 s extraction step, with the absolute mass sampled per extraction being similar to 100 ng. While the intrasample variability in the analytical responses for triplicate sampling of the same swipe yield similar to 30% RSD, this lack of precision is offset by the ability to determine isotope ratios for enriched uranium specimens with a precision of better than 10% RSD. Pooled, intersample precision (n = 9) was found to be <5%RSD across the various sample compositions. Finally, U-235/U-238 determinations (ranging from 0.053 to 1.806) were accurate with errors of <10%, absolute. The U-234- and U-236-inclusive ratios were determined with similar accuracy in enriched samples. While the driving force for the effort is in the realm of nuclear nonproliferation efforts, the ubiquitous use of cloth swipes across many application areas could benefit from this convenient approach, including the use of versatile, reduced-format mass spectrometer systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要