Probing Surface Photovoltage Effect Using Photo-Assisted Secondary Electron Emission.

JOURNAL OF PHYSICAL CHEMISTRY A(2020)

引用 10|浏览15
暂无评分
摘要
While the properties of surfaces and interfaces are crucial to modern devices, they are commonly difficult to explore since the signal from the bulk often masks the surface contribution. Here we introduce a methodology based on scanning electron microscopy (SEM) coupled with a pulsed laser source, which offers the capability to sense the topmost layer of materials, to study the surface photovoltage (SPV) related effects. This method relies on a pulsed optical laser to transiently induce an SPV and a continuous primary electron beam to produce secondary electron (SE) emission and monitor the change of the SE yield under laser illumination. We observe contrasting behaviors of the SPV-induced SE yield change on n-type and p-type semiconductors. We further study the dependence of the SPV-induced SE yield on the primary electron beam energy, the optical fluence, and the modulation frequency of the optical excitation, which reveal the details of the dynamics of the photocarriers in the presence of the surface built-in potential. This fast, contactless, and bias-free technique offers a convenient and robust platform to probe surface electronic phenomena, with great promise to probe nanoscale effects with a high spatial resolution. Our result further provides a basis to understand the contrast mechanisms of emerging time-resolved electron microscopic techniques, such as the scanning ultrafast electron microscopy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要