Design and Development of an HBT-Based Ratiometric Fluorescent Probe to Monitor Stress-Induced Premature Senescence.

ACS omega(2020)

引用 14|浏览9
暂无评分
摘要
Stress-induced premature senescence (SIPS) can be induced in tumor cells by reactive oxygen species (ROS) or oncogenes. The antineoplastic drugs cause apoptosis and senescence by damaging the DNA. Although the detection of cellular senescence is important to monitor drug response during anticancer therapy, only a few probes have been studied for imaging SIPS. In this study, we developed 2-(2'-hydroxyphenyl)benzothiazole (HBT)-based fluorescent probes to determine SIPS by monitoring the oxidative stress and β-galactosidase activity. HBT is a commonly used fluorophore because of its luminescence mechanism via excited-state intramolecular proton transfer, and it has attractive properties, such as a four-level photochemical process and large Stokes shift (151 nm). A novel fluorescent probe, (2-(benzo[]thiazol-2-yl)phenyl)boronic acid, was prepared for the detection of ROS, including HO, via the oxidation reaction of arylboronic acids to form the fluorescent phenol, HBT. In addition, to determine the enzymatic activity of β-galactosidase, a 2-(4'-chloro-2'-hydroxyphenyl)benzothiazole (CBT)-based enzymatic turn-on probe (CBT-β-Gal) was designed and synthesized. β-Galactosidase catalyzed the hydrolysis of β-galactopyranoside from CBT-β-Gal to release the fluorescent CBT. These probes were capable of ratiometric imaging the accumulation of HO and the degree of β-galatosidase activity in contrast to HO-untreated and HO-treated HeLa cells. Furthermore, these probes were successfully employed for imaging the increased levels of ROS and β-galactosidase activity in the doxorubicin-treated HeLa cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要