Hydrodynamics Of Nonintegrable Systems From A Relaxation-Time Approximation

PHYSICAL REVIEW B(2021)

引用 23|浏览53
暂无评分
摘要
We develop a general kinetic theory framework to describe the hydrodynamics of strongly interacting, nonequilibrium quantum systems in which integrability is weakly broken, leaving a few residual conserved quantities. This framework is based on a generalized relaxation-time approximation; it gives a simple, but surprisingly accurate, prescription for computing nonequilibrium transport even in strongly interacting systems. We validate the predictions of this approximation against matrix product operator calculations on chaotic quantum spin chains, finding surprisingly good agreement. We show that despite its simplicity, our framework can capture phenomena distinctive to strongly interacting systems, such as widely separated charge and energy diffusion constants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要