Single and competitive sorption of sulfadiazine and chlortetracycline on loess soil from Northwest China☆.

ENVIRONMENTAL POLLUTION(2020)

引用 17|浏览6
暂无评分
摘要
The fate of veterinary antibiotics (VAs) in soil environment is determined by the hydrophilic performance and solubility of VAs and the type of soil. In this study, sulfadiazine (SDZ) and chlortetracycline (CTC) were selected as target pollutants, and a batch sorption method was used to find out the single and sorption competitive behavior and mechanism of the target pollutants on loess soil. Kinetic studies showed the apparent sorption equilibrium was reached 0-6 h for CTC and 0-12 h for SDZ. The sorption kinetics of VAs on loess soil were fitted well with a pseudo-second order kinetic model. Sorption thermodynamic data indicated the isotherm sorption of both SDZ and CTC on loess soil was fitted well with Freundlich isothermal (R2, 0.960-0.975) and linear models (R2, 0.908-0.976). The sorption affinity of CTC (Kd, 290-1620 L/kg for CTC) was much greater than that of SDZ (Kd, 0.6-4.9 L/kg for SDZ). The results also suggest that SDZ may be easily mobilized or leached from loess soil at neutral and alkaline pH, while CTC may be easily mobilized or leached at neutral pH. The sorption of each single target pollutant on the outer layer complex decreased with increasing ionic strength. Higher initial concentrations resulted in greater sorption capacity of target pollutants on loess soil increased. The sorption capacities of CTC and SDZ in the mixed system were lower than the sorption capacity of each single system, showing a competitive sorption behavior of CTC and SDZ during the sorption process. Overall, CTC showed the highest sorption potential in loess soil, whereas SDZ showed a high leaching risk in loess soil. These findings contribute to understanding the fate of different VAs in loess in the natural environment.
更多
查看译文
关键词
Chlortetracycline,Sulfadiazine,Sorption models,Competitive sorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要