Multiradical-Stabilized Hollow Carbon Spheres As A Pressure-Resistant Cathode For Fast Lithium/Sodium Storage With Excellent Performance

JOURNAL OF MATERIALS CHEMISTRY A(2020)

引用 8|浏览40
暂无评分
摘要
Improving the energy density of pressure-tolerant batteries is an important approach to improving the working ability of underwater robots. Organic radical cathodes have a faster reaction mechanism than inorganic transition metal oxide cathodes but, currently, still do not provide high capacity, high rate, and stable cycling performance at the same time. Therefore, we fabricated a pressure-resistant organic radical cathode based on hollow carbon spheres (HCSs) with a stable structure and chemically modified the HCSs with nitroxide radical monomers (TEMPO-HCSs). Enriched nitroxide radicals form more active sites on HCSs, resulting in a better conductivity than that of nitroxide radical polymers and an improved electrochemical performance. The grafted nitroxide radicals stabilize the HCS structure, which is beneficial for application of TEMPO-HCSs as the cathode in lithium ion and sodium ion batteries at 5 MPa, showing high specific capacities of 339 and 297 mA h g(-1), respectively, as well as high rate and stable cycling performances. Constructing high-performance and pressure-resistant cathodes is a prerequisite for an increased efficiency of underwater robots.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要