Design of a Sandwich Hierarchically Porous Membrane with Oxygen Supplement Function for Implantable Glucose Sensor

APPLIED SCIENCES-BASEL(2020)

引用 3|浏览5
暂无评分
摘要
Featured Application A functional membrane was proposed to maintain a wide linear detection range, increase the sensitivity of the glucose sensor and reduce the difficulty of continuous glucose monitoring systems (CGMS) development. This CGMS system includes a glucose sensor, a data collector and a health management platform that can help people with diabetes maintaining euglycemia at an affordable cost in the future. Abstract This study aims to develop an oxygen regeneration layer sandwiched between multiple porous polyurethanes (PU) to improve the performance of implantable glucose sensors. Sensors were prepared by coating electrodes with platinum nanoparticles, Nafion, glucose oxidase and sandwich hierarchically porous membrane with an oxygen supplement function (SHPM-OS). The SHPM-OS consisted of a hierarchically porous structure synthesized by polyethylene glycol and PU and a catalase (Cat) layer that was coated between hierarchical membranes and used to balance the sensitivity and linearity of glucose sensors, as well as reduce the influence of oxygen deficiency during monitoring. Compared with the sensitivity and linearity of traditional non-porous (NO-P) sensors (35.95 nA/mM, 0.9987, respectively) and single porous (SGL-P) sensors (45.3 nA /mM, 0.9610, respectively), the sensitivity and linearity of the SHPM-OS sensor was 98.45 nA/mM and 0.9989, respectively, which was more sensitive with higher linearity. The sensor showed a response speed of five seconds and a relative sensitivity of 90% in the first 10 days and remained 78% on day 20. This sensor coated with SHPM-OS achieved rapid responses to changes of glucose concentration while maintaining high linearity for long monitoring times. Thus, it may reduce the difficulty of back-end hardware module development and assist with effective glucose self-management for people with diabetes.
更多
查看译文
关键词
glucose sensor,hierarchically porous structure,oxygen regeneration,polyurethane,polyethylene glycol
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要