Direct measurement of radial fluence distribution inside a femtosecond laser filament core.

OPTICS EXPRESS(2020)

引用 6|浏览49
暂无评分
摘要
Modulation and direct measurement of the radial fluence distribution inside a single filament core (especially less than 100 mu m in diameter) is crucial to filament-based applications. We report direct measurements of the radial fluence distribution inside a femtosecond laser filament core and its evolution via the filament-induced ablation method. The radial fluence distributions were modulated by manipulating the input pulse diffraction through an iris. Compared with using a traditionally circular iris, a stellate iris substantially suppressed the diffraction effect, and laser fluence, intensity and plasma density inside the filament core were considerably increased. The radial fluence inside filament cores was also quantitatively measured via the filament drilling diaphragms approach. Furthermore, numerical simulations were performed to support the experimental results by solving nonlinear Schrodinger equations. The effects of the tooth size of the stellate iris were numerically investigated, which indicated that bigger tooth favors higher fluence and longer filament. In addition to being beneficial in understanding the filamentation process and its control, the results of this study can also be valuable for filament-based applications. (c) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要