Controlling of the Dirac band states of Pb-deposited graphene by using work function difference

AIP ADVANCES(2020)

引用 3|浏览19
暂无评分
摘要
We have performed scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) in Pb-deposited bilayer graphene (BLG) on the SiC(0001) substrate to investigate the dependence of the electronic structures on the Pb-deposition amount. We have observed that the Pb atoms form islands by STM and the pi bands of the BLG shift toward the Fermi level by ARPES. This hole-doping-like energy shift is enhanced as the amount of Pb is increased, and we were able to tune the Dirac gap to the Fermi level by 4 ML deposition. Considering the band dispersion, we suggest that the hole-doping-like effect is related to the difference between the work functions of Pb islands and BLG/SiC; the work function of BLG/SiC is lower than that of Pb. Our results propose an easy way of band tuning for graphene with an appropriate selection of both the substrate and deposited material.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要