Elevated pigment epithelium-derived factor induces diabetic erectile dysfunction via interruption of the Akt/Hsp90β/eNOS complex

DIABETOLOGIA(2020)

引用 9|浏览61
暂无评分
摘要
Aims/hypothesis Diabetes mellitus erectile dysfunction (DMED) is a common complication of diabetes. The level of pigment epithelium-derived factor (PEDF) is significantly upregulated in the serum of individuals with obesity and diabetes. However, whether elevated PEDF levels contribute to DMED remains unknown. This study aimed to investigate the pathogenic role of PEDF and its related mechanism in DMED. Methods We enrolled 65 men, of whom 20 were nondiabetic control participants, 21 participants with diabetes but without erectile dysfunction, and 24 with DMED. The International Index of Erectile Function (IIEF-5) questionnaire was administered to evaluate erectile function. Plasma PEDF in diabetic participants and streptozotocin (STZ)-induced diabetic animals was detected by ELISA. Erectile function was evaluated by measuring the intracavernous pressure (ICP) and the ICP/mean arterial pressure (MAP) ratio in STZ-induced diabetic rats treated with PEDF-neutralising antibody (PEDF-Ab), db / db mice treated with PEDF-Ab, and Pedf knockout mice with STZ-induced diabetes. The overexpression of PEDF was implemented by intraperitoneal injection of recombinant PEDF and intracavernous injection of PEDF -expressing adenovirus. A mechanistic study was performed by immunofluorescence staining, bimolecular fluorescence complementation (BiFC), immunoprecipitation and western blotting. Results We found that the plasma level of PEDF was significantly higher in participants with DMED compared with diabetic counterparts without erectile dysfunction and nondiabetic controls. Interestingly, PEDF levels were negatively correlated with plasma nitrite/nitrate levels and erectile function in DMED patients and STZ-induced diabetic rats. Furthermore, overexpression of PEDF significantly suppressed ICP and endothelial nitric oxide synthase (eNOS) phosphorylation in control rats. In contrast, the PEDF-Ab and Pedf knockout ameliorated ICP and eNOS phosphorylation in diabetic rats and mice. Mechanistically, PEDF promoted the membrane translocation of Hsp90β and directly bound to the amino acid residues 341–724 of Hsp90β on the endothelial cell surface, subsequently blocking intracellular Hsp90β/Akt/eNOS complex formation and downregulating eNOS phosphorylation. Conclusions/interpretation These results indicate that elevated PEDF levels contribute to impaired erectile function by suppressing Hsp90β-mediated eNOS phosphorylation and that PEDF may represent a novel therapeutic target for diabetic erectile dysfunction. Graphical abstract
更多
查看译文
关键词
Diabetes mellitus erectile dysfunction DMED,Endothelial cells eNOS,Hsp90β,PEDF,Pigment epithelium-derived factor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要