Synthesis of Zwitterionic and Trehalose Polymers with Variable Degradation Rates and Stabilization of Insulin.

Biomacromolecules(2020)

引用 18|浏览5
暂无评分
摘要
Polymers that stabilize biomolecules are important as excipients in protein formulation. Herein, we describe a class of degradable polymers that have tunable degradation rates depending on the polymer backbone and can stabilize proteins to aggregation. Specifically, zwitterion- and trehalose-substituted polycaprolactone, polyvalerolactone, polycarbonate, and polylactide were prepared and characterized with regards to their hydrolytic degradation and ability to stabilize insulin to mechanical agitation during heat. Ring-opening polymerization (ROP) of allyl-substituted monomers was performed by using organocatalysis, resulting in well-defined alkene-substituted polymers with good control over molecular weight and dispersity. The polymers were then modified by using photocatalyzed thiol-ene reactions to install protein-stabilizing carboxybetaine and trehalose side chains. The resulting polymers were water-soluble and exhibited a wide range of half-lives, from 12 h to more than 3 months. The polymers maintained the ability to stabilize the therapeutic protein insulin from activity loss due to aggregation, demonstrating their potential as degradable excipients for protein formulation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要