Ultrafast nucleation and growth of high-quality monolayer MoSe2 crystals via vapor-liquid-solid mechanism.

NANOTECHNOLOGY(2020)

引用 22|浏览18
暂无评分
摘要
The controlled production of two-dimensional atomically thin transition metal dichalcogenides (TMDs) is fundamentally important for their device applications. However, the synthesis of large-area and high-quality TMD monolayers remains a challenge due to the lack of sufficient understanding of growth mechanisms, especially for the chemical vapor deposition (CVD). Here we report molten-salt assisted CVD growth of highly crystalline MoSe2 monolayers via a novel vapor-liquid-solid (VLS) mechanism. Our results show that the growth rate of the VLS-grown monolayer MoSe2 is about 40 times faster than that of MoSe2 grown via the vapor-solid (VS) mechanism, which makes the fabrication of 100 mu m domains for similar to 2 min and a uniform monolayer film within 5 min. The ultrafast growth of monolayer MoSe2 crystals benefits from the synergic effect of one-dimensional VLS growth and two-dimensional VS edge expansion. Moreover, these MoSe2 monolayers exhibit high crystal quality and enhanced photoluminescence due to efficient Se-vacancy repairing by the doping of halogen atoms. These findings provide a new understanding of MoSe2 growth and open up an opportunity for the rapid synthesis of high-quality TMD monolayers and heterostructures.
更多
查看译文
关键词
transition metal dichalcogenides,chemical vapor deposition,vapor-liquid-solid mechanism,photoluminescence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要